SimpleEventBuilder/testing/is_epoll_really_thsafe/event_builder_epoll.cxx

324 lines
9.4 KiB
C++
Raw Normal View History

2023-08-27 14:18:17 +00:00
#include <cerrno>
#include <cstddef>
#include <cinttypes>
2023-08-27 14:18:17 +00:00
#include <cstdint>
#include <cstdio> // for fprintf()
#include <functional>
#include <iostream>
#include <queue>
2023-08-27 14:18:17 +00:00
#include <ratio>
#include <unistd.h> // for close(), read()
#include <sys/epoll.h> // for epoll_create1(), epoll_ctl(), struct epoll_event
#include <cstring> // for strncmp
//my addition to the online guide
#include <csignal>
#include <cstdlib>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <fcntl.h>
#include <utility>
#include <vector>
#include <chrono>
#include <fstream>
#include <thread>
#include <mutex>
#include <atomic>
#include <array>
#define MAX_EVENTS 20000
int makeSocket() {
int sockfd;
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket failed");
exit(EXIT_FAILURE);
}
return sockfd;
}
void bindSocketPort(int server_fd, int port) {
struct sockaddr_in localAddr;
localAddr.sin_family = AF_INET;
localAddr.sin_addr.s_addr = INADDR_ANY;
localAddr.sin_port = htons(port);
if (bind(server_fd, (struct sockaddr *)&localAddr, sizeof(localAddr)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);
}
printf("FD %d bound to port %d\n", server_fd, port);
}
void startListening(int server_fd) {
if (listen(server_fd, 20000) < 0) {
perror("listen");
exit(EXIT_FAILURE);
}
printf("FD %d listening to new connections\n", server_fd);
}
int acceptConnection(int server_fd) {
int client_fd;
struct sockaddr_in remoteAddr;
size_t addrlen = sizeof(remoteAddr);
if ((client_fd = accept(server_fd, (struct sockaddr *)&remoteAddr, (socklen_t *)&addrlen)) < 0) {
perror("accept");
exit(EXIT_FAILURE);
} else {
int flags = fcntl(client_fd, F_GETFL);
fcntl(client_fd, F_SETFL, flags | O_NONBLOCK);
}
printf("Connection from host %s, port %d, FD %d\n", inet_ntoa(remoteAddr.sin_addr), ntohs(remoteAddr.sin_port), client_fd);
return client_fd;
}
void acceptConnectionEpollStyle(int server_fd, int &efd) {
struct sockaddr_in new_remoteAddr;
int addrlen = sizeof(struct sockaddr_in);
while (true) {
int conn_sock = accept(server_fd, (struct sockaddr*)&new_remoteAddr, (socklen_t*)&addrlen);
if (conn_sock == -1) {
// All incoming connections have been processed
if ((errno == EAGAIN) || (errno == EWOULDBLOCK)) {
break;
} else {
perror("accept");
break;
}
}
// make new connection non-blocking
int flags = fcntl(conn_sock, F_GETFL, 0);
fcntl(conn_sock, F_SETFL, flags | O_NONBLOCK);
// monitor new connection for read events, always in edge triggered
struct epoll_event event;
event.events = EPOLLIN | EPOLLEXCLUSIVE;//| EPOLLET;
event.data.fd = conn_sock;
// Allow epoll to monitor the new connection
if (epoll_ctl(efd, EPOLL_CTL_ADD, conn_sock, &event) == -1) {
perror("epoll_ctl: conn_sock");
break;
}
printf("Accepted epoll style connection from %s:%d from fd: %d\n", inet_ntoa(new_remoteAddr.sin_addr), ntohs(new_remoteAddr.sin_port), conn_sock);
}
}
void term_handler(int signal) {
printf("Terminated, received SIGNAL %d", signal);
exit(EXIT_SUCCESS);
}
std::atomic<uint64_t> grandtotal_kb;
std::queue<std::pair<int, uint64_t>> data_queue;
std::mutex queue_mutex;
2023-08-27 14:18:17 +00:00
void thradizable(int &epoll_fd, int &master_socket, const int &th_flag, const int thread_index) {
2023-08-27 14:18:17 +00:00
epoll_event events[MAX_EVENTS];
uint64_t bytes_read = 0;
uint64_t kBytes_read = 0;
while (true) {
if (th_flag == 1) {
grandtotal_kb += kBytes_read;
break;
}
// Time measurements
///auto start = std::chrono::high_resolution_clock::now();
// Returns only the sockets for which there are events
//printf("Before wait\n");
int nfds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
//printf("After wait\n");
if (nfds == -1) {
perror("epoll_wait");
exit(EXIT_FAILURE);
}
2023-08-27 14:18:17 +00:00
// Iterate on the sockets having events
for (int i = 0; i < nfds; i++) {
//printf("Tot fds = %d reading from %d\n", nfds, i);
int fd = events[i].data.fd;
if (fd == master_socket) {
// If the activity is on the master socket, than it's a new connection request
acceptConnectionEpollStyle(master_socket, epoll_fd);
} else if ((events[i].events & EPOLLERR) || (events[i].events & EPOLLHUP) || (!(events[i].events & EPOLLIN))) {
// Than the client connection is closed, so I close it
printf("Closing %d", fd);
close(fd);
} else {
uint64_t part = grandtotal_kb;
//printf("Ev trig th %d with tot b %lu\n", thread_index, part);
2023-08-27 14:18:17 +00:00
// Than we received data from one of the monitored sockets
uint64_t buffer[8];
2023-08-27 14:18:17 +00:00
int valread = 0;
//while (valread != EAGAIN) {
std::unique_lock<std::mutex> lk(queue_mutex);
valread = recv(fd, reinterpret_cast<char*>(buffer), sizeof(buffer), 0);
2023-08-27 14:18:17 +00:00
if (valread > 0) {
//printf("[RICEVUTO]\t FROM %d\n", fd);
int opt_incr = (valread % 8) ? 1 : 0;
for (int q_i = 0; q_i < (valread/8) + opt_incr; q_i++) {
data_queue.push(std::pair<int, uint64_t>(thread_index, buffer[q_i]));
}
grandtotal_kb += valread;
/*
2023-08-27 14:18:17 +00:00
bytes_read += valread;
int kilos = 0;
if ((kilos = bytes_read / 1024) > 0) {
kBytes_read += kilos;
bytes_read -= (kilos * 1024);
//printf("reade bites %lu", bytes_read);
}*/
2023-08-27 14:18:17 +00:00
}
lk.unlock();
2023-08-27 14:18:17 +00:00
//}
}
}
///auto end = std::chrono::high_resolution_clock::now();
///double time_taken = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
//time taken in milliseconds
///
/*time_taken *= 1e-6;
total_time_taken += time_taken;
if (total_time_taken > 3e4) {
times.push_back(total_time_taken);
tot_received_data.push_back(kBytes_read);
break;
}*/
///
}
}
std::vector<uint64_t> popped;
void printer_thread() {
while (1) {
std::unique_lock<std::mutex> lk(queue_mutex);
if (!data_queue.empty()) {
std::pair<int, uint64_t> element = data_queue.front();
data_queue.pop();
popped.push_back(element.second);
//printf("Element: %lu from thread %d\n", element.second, element.first);
if (element.second == 999) {
int fail_flag = 0;
for (int i = 1; i < 999; i++) {
if (popped[i] == i) continue;
else fail_flag = 1;
}
if (fail_flag == 1) printf("FAILURE\n");
else printf("success\n");
}
}
lk.unlock();
usleep(10);
}
}
2023-08-27 14:18:17 +00:00
int main(int argc, char const *argv[]) {
signal(SIGTERM, term_handler);
if (argc != 2) {
printf("Usage: %s portNumber \n", argv[0]);
exit(EXIT_FAILURE);
}
int port = atoi(argv[1]);
printf("Start socket port %d\n", port);
int master_socket;
const int opt = 1;
master_socket = makeSocket();
//set master socket to allow multiple connections ,
//this is just a good habit, it will work without this
if( setsockopt(master_socket, SOL_SOCKET, SO_REUSEADDR, (char *)&opt,
sizeof(opt)) < 0 )
{
perror("setsockopt");
exit(EXIT_FAILURE);
}
bindSocketPort(master_socket, port);
startListening(master_socket);
int flags = fcntl(master_socket, F_GETFL, 0);
fcntl(master_socket, F_SETFL, flags | O_NONBLOCK);
epoll_event ev, events[MAX_EVENTS];
std::array<uint64_t, MAX_EVENTS> kBytes_read_on_descr;
//The atomic here is used as a flag to tell the thread to stop
std::vector<std::thread> vThreads;
//create the epoll instance
int epoll_fd = epoll_create1(0);
if (epoll_fd == -1) {
printf("Failed to create epoll file descriptor\n");
exit(EXIT_FAILURE);
}
ev.data.fd = master_socket;
// Reading events with edge triggered mode
ev.events = EPOLLIN | EPOLLEXCLUSIVE;//| EPOLLET;
// Allowing epoll to monitor the master_socket
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, master_socket, &ev) == -1){
perror("epoll_ctl");
exit(EXIT_FAILURE);
}
std::array<std::thread, 2> vT;
std::array<int, 2> thread_flags;
for (int t_i = 0; t_i < 2; t_i++) {
thread_flags[t_i] = 0;
vT[t_i] = std::thread(thradizable, std::ref(epoll_fd), std::ref(master_socket), std::cref(thread_flags.at(t_i)), t_i);
}
2023-08-27 14:18:17 +00:00
std::thread printer(printer_thread);
2023-08-27 14:18:17 +00:00
printer.join();
2023-08-27 14:18:17 +00:00
if (close(epoll_fd)) {
printf("Failed to close epoll file descriptor");
exit(EXIT_FAILURE);
}
return 0;
}